MyException - 我的异常网
当前位置:我的异常网» 人工智能 » 康奈尔高校王飞: 医学人工智能真正落地面临的三大

康奈尔高校王飞: 医学人工智能真正落地面临的三大挑战

www.MyException.Cn  网友分享于:2013-12-18  浏览:0次
康奈尔大学王飞: 医学人工智能真正落地面临的三大挑战

点击有惊喜


阿里云幸运券分享给你,用券购买或者升级阿里云相应产品会有特惠惊喜哦!把想要买的产品的幸运券都领走吧!快下手,马上就要抢光了。

 

e875f5be2c1fe224747b985ad4d759850862bf55

王飞:谢谢大家!很高兴新智元的邀请让我有机会跟大家分享。我们这个会主要强调人工智能,所以技术方面的内容大家听得比较多。我想讲一讲我从2010年开始在临床数据分析领域我们在技术之外遇到的一些问题,以及还有哪些挑战。

d2631a0fff2e22bc20177ce71dd192836bdbe25d

我们现在强调人工智能在治疗当中的应用,有各种各样的创业话题,包括AI技术怎样帮助医生进行决策支持,怎样帮助病人去更好地了解自己的病情,我们也有专门人员在研究怎样通过AI技术促进患者参与到治疗过程当中。前段时间有一篇论文发表在新英格兰医学杂志上,讲到Patient Reported Outcome。过去医生给病人医嘱,但不去确认病人是否按照这些建议执行。现在通过AI系统跟踪病人,然后就病人是否遵照医嘱做临床比较试验,结果发现病人如果严格遵照医嘱治疗效果会明显提升。AI技术对于药厂等企业也有很大帮助。

8480417215b7a310f6a2c096643a847eddbd787c

今年发生的多个重要事件让AI在医学领域的应用变得非常火爆。首先是我的一个医生朋友去年在新英格兰医学杂志上发表的一篇论文,讨论了大数据和机器学习对临床医学的一些影响,里面有一个观点:以前大家用的AI是专家系统,专家系统就好比是医学院的学生,毕业后做医生看病时实际是把病人当前状况和书本里面学到的知识作比较,书本里叫我怎样做我就应该怎样做。而现在的机器学习和AI更像是已经在看病人的医生,从已有的案列中寻找相似性,绝非仅限于书本知识 。

另一个事件是斯坦福今年2月在Nature上发表的一篇封面文章,研究团队用GoogleNet对13万张皮肤病人图像做了分析建立预测模型,从皮肤图像来预测改病人是否有恶性病变。经过系统评测该模型可达到与皮肤科医生类似的判断水准。还有几篇类似论文,比如用深度学习方法研究自闭症婴儿的脑图像,也得到了好的预测结果。

72daee4a9709e2ef88acefa54f81f91716c494ef

实际上AI促进医学发展不只体现在学术界,同样也体现在工业界。现在美国有上百家的创业公司从事医药各方面的数据工作,涵盖影像、语音交互等各个方面。中国数字医疗网曾对AI在医药方面的应用市场情况做过预测,预测结果表明市场前景一片大好。而随着AI应用的不断发展,也涌现出来一些问题。

1d0bc80d2cf13f64bf8da13328fe86845d7b0927

首先看一个很著名的案例,MD Anderson宣布解除与IBM开发的Watson的合作。尽管MD Anderson也有自己的问题,但是沃森这个项目在对应时间内的确没有做出之前预期的效果,这也是导致合作失败的一个原因。因为医学数据的特殊性比其他类别的数据要强很多,比如隐私性,伦理道德约束,法律约束等。这意味着与图像、语音应用相比,分析医学数据的壁垒会更高。这个壁垒不仅指技术壁垒,更指其还受其他因素的制约。

1b545f1ad38a7a38d22fc2e2fcd1e3e0de9d2054

最近Gartners的技术曲线非常火热,它认为任何一个技术兴起都要经过几个阶段:技术从兴起到过热,再到peak of inflated expectation,在这一点上表示人们对该技术的期望过高,这样后期期望就会下降,在曲线上形成槽型部分;经过这个下降阶段后人们变得理智,这项技术会再慢慢发展起来,最后趋向成熟。

c6fa4dc2aba4b7a586124954a2cd800476ceb24b

从2016年的曲线图上我们能看到,机器学习是在peak inflated expectation上的,那么接下来它就会下行。今年早些时候新英格兰医学杂志上的一篇评论指出,为了让机器学习的方法在医学中的应用平稳的度过这个下行期,一个重要的途径是正确认识机器学习方法的局限性,与医生的知识相结合。

最近AlphaGO又出了zero,号称可以不借助任何的外在知识一样可以下赢围棋,但一个前提条件是围棋有明确的规则和胜负规则,但医学并没有如此清晰的规则。但这一点是许多研究者,尤其是计算机科学或者AI研究人员忽视的方面。很多时候技术人员强调数据,强调自动,但是忽略了医药是一个专业性很强的领域,如果没有医生参与,我们很难得到正确的对临床确实有益的结论。由于我本身在医学院工作,这方面体会尤其明显。

我想举几个例子来说明AI在分析医学数据时遇到的问题。 

第一个例子,我们说说再住院预测(Hospital Readmission Prediction),这是很火的一个话题,2012、2013年有机构曾专门投入300万美元来做这项研究。再住院是指你住了院以后,出院很短时间内又住回来,这种情况很有可能是因为医院措施不当。一般来讲再定义的时间一般是30天 。像CMS会惩罚重复住院率很高的医院。这是一些重复住院率非常高的疾病,比如说像心衰,心脏病,还有肺炎。这是一个美国地图,我们可以看到超时曲线的下降,就是因为CMS出台的高再住院率处罚政策,证明这个政策还是有效的。

406f65a0b969a846fa2b088d6a6e153e9b3dcaa9

这个是UPMC做的研究,他们是想预测肺炎病人能不能在不住院的情况下治好,是不是能避免再住院。他们使用大数据或机器学习的方法,得到一条规律是,同时患肺炎和哮喘的病人的死亡风险比只患肺炎的人低很多。这条规律令所有人惊讶,后来大家发现是因为同时得了肺炎和哮喘的病人会直接被送到ICU,在ICU里他会得到密切的照顾,这样使得他的治疗结果会变得更好。而这一点并没有在数据中体现。

fdab0a3c08f1ca8a75ec8ec8f547e5cb09a44f64

另一个例子是药物不良反应研究。BMJ上2010年9月份曾发表过一篇论文,发现吃双磷酸盐这种药,会极大提升食管癌发病率。而同年8月,JAMA在同样的问题上做了研究,发现吃这种药和食管癌发病率提升没有明显关系。课件这两篇在同一时期发表在两本不同顶级临床医学杂志上的文章的除了截然不同的结论,并且他们还都是在同一个病人队列中进行的研究。这个情况在医药学中经常出现,我们经常强调数据质量,其实这远不止数据质量的问题,我们需要考虑很多因素来保证从数据中发现的不是噪音,而是真实的结果。

c3c22f6af8840f2b40542850ff35395cbca08a7f

总结一下,我们分析医学数据和医学人工智能,要真正做能落地的研究面临的挑战有哪些呢?大概有这几个方面。

第一数据质量是关键,如果数据质量很差,有很多噪音或异常值就发现不了很多东西。所以我们需要发展统一的质量评估框架,现在很多人在做这方面的研究。

第二点是数据量,跟很多应用深度学习的领域不同,医学数据不是想要多少病人就有多少病人的,还需要将病人数分散到不同的病种上,尤其是一些少见疾病的病人的数量非常少。样本量不足时怎样进行分析呢?我们通过各种各样的技术,比如临床、可穿戴设备等多种手段尽量得到病人的所有信息,就是为了弥补有限的病人样本的问题。

第三点是数据标准,美国的数据标准化程度比较好,我们现在在推广Observational Health Data Science and Informatics,OHDSI,这是一个组织,希望能推行病人电子病历数据的一套标准,现在已经有很多美国医院在将他们的数据向这个标准上靠拢。全世界已经有20个国家有OHDSI成员,数据库中已经有6亿个病人数据。我们也成立了OHDSI China Working Group,并成立了几个分组,我是数据分析分组的组长之一,我们也在试图和中国多家医院进行合作推广。数据如果不标准,很多疾病称呼混淆就无法进行讨论,所以需要规范化的标准。

12ab83558327290457c7847870df39d335175a65

这里数据维度和异质性就不讲了。还有数据偏倚,比如沃森只能在美国病人群体上用,在菲律宾怎么用?还有模型的可解释性,我们用深层学习模型去预测皮肤癌,但结果皮肤科医生不敢用,因为医生需要知道是由于出现哪些特点,才导致了这样一个预测结果,模型的解释性要强。还有模型的适用性,前面说了,AlphaGO Zero的优势在于不需要数据,它的规则非常清晰,但医疗领域没有那么清晰的规则。还有隐私性,有学者在专门研究怎样在不泄漏任何隐私的条件下做医疗分析。

这是当前发展机器学习或者AI算法用于分析医疗数据的挑战,我们在开发任何方法的时候都要意识到这些挑战,才能让我们做出来的应用真正适用于医学场景,让它变得更实用。

 

 

点击有惊喜

.

文章评论

程序员必看的十大电影
程序员必看的十大电影
写给自己也写给你 自己到底该何去何从
写给自己也写给你 自己到底该何去何从
程序员都该阅读的书
程序员都该阅读的书
Web开发者需具备的8个好习惯
Web开发者需具备的8个好习惯
我是如何打败拖延症的
我是如何打败拖延症的
总结2014中国互联网十大段子
总结2014中国互联网十大段子
程序员应该关注的一些事儿
程序员应该关注的一些事儿
程序员和编码员之间的区别
程序员和编码员之间的区别
十大编程算法助程序员走上高手之路
十大编程算法助程序员走上高手之路
老程序员的下场
老程序员的下场
如何区分一个程序员是“老手“还是“新手“?
如何区分一个程序员是“老手“还是“新手“?
什么才是优秀的用户界面设计
什么才是优秀的用户界面设计
中美印日四国程序员比较
中美印日四国程序员比较
Java程序员必看电影
Java程序员必看电影
程序员眼里IE浏览器是什么样的
程序员眼里IE浏览器是什么样的
10个帮程序员减压放松的网站
10个帮程序员减压放松的网站
Java 与 .NET 的平台发展之争
Java 与 .NET 的平台发展之争
每天工作4小时的程序员
每天工作4小时的程序员
要嫁就嫁程序猿—钱多话少死的早
要嫁就嫁程序猿—钱多话少死的早
Google伦敦新总部 犹如星级庄园
Google伦敦新总部 犹如星级庄园
为什么程序员都是夜猫子
为什么程序员都是夜猫子
60个开发者不容错过的免费资源库
60个开发者不容错过的免费资源库
漫画:程序员的工作
漫画:程序员的工作
聊聊HTTPS和SSL/TLS协议
聊聊HTTPS和SSL/TLS协议
2013年美国开发者薪资调查报告
2013年美国开发者薪资调查报告
旅行,写作,编程
旅行,写作,编程
5款最佳正则表达式编辑调试器
5款最佳正则表达式编辑调试器
程序员最害怕的5件事 你中招了吗?
程序员最害怕的5件事 你中招了吗?
“肮脏的”IT工作排行榜
“肮脏的”IT工作排行榜
鲜为人知的编程真相
鲜为人知的编程真相
团队中“技术大拿”并非越多越好
团队中“技术大拿”并非越多越好
当下全球最炙手可热的八位少年创业者
当下全球最炙手可热的八位少年创业者
程序员周末都喜欢做什么?
程序员周末都喜欢做什么?
程序猿的崛起——Growth Hacker
程序猿的崛起——Growth Hacker
代码女神横空出世
代码女神横空出世
一个程序员的时间管理
一个程序员的时间管理
不懂技术不要对懂技术的人说这很容易实现
不懂技术不要对懂技术的人说这很容易实现
那些性感的让人尖叫的程序员
那些性感的让人尖叫的程序员
Web开发人员为什么越来越懒了?
Web开发人员为什么越来越懒了?
做程序猿的老婆应该注意的一些事情
做程序猿的老婆应该注意的一些事情
10个调试和排错的小建议
10个调试和排错的小建议
程序员的一天:一寸光阴一寸金
程序员的一天:一寸光阴一寸金
看13位CEO、创始人和高管如何提高工作效率
看13位CEO、创始人和高管如何提高工作效率
如何成为一名黑客
如何成为一名黑客
那些争议最大的编程观点
那些争议最大的编程观点
编程语言是女人
编程语言是女人
为啥Android手机总会越用越慢?
为啥Android手机总会越用越慢?
我的丈夫是个程序员
我的丈夫是个程序员
“懒”出效率是程序员的美德
“懒”出效率是程序员的美德
软件开发程序错误异常ExceptionCopyright © 2009-2015 MyException 版权所有