MyException - 我的异常网
当前位置:我的异常网» 数据库 » B-tree 跟B+tree

B-tree 跟B+tree

www.MyException.Cn  网友分享于:2013-11-16  浏览:0次
B-tree 和B+tree

目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从数据结构角度描述它们。

B-Tree

为了描述B-Tree,首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:

d为大于1的一个正整数,称为B-Tree的度。

h为一个正整数,称为B-Tree的高度。

每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。

每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null 。

所有叶节点具有相同的深度,等于树高h。

key和指针互相间隔,节点两端是指针。

一个节点中的key从左到右非递减排列。

所有节点组成树结构。

每个指针要么为null,要么指向另外一个节点。

如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。

如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。

如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。

图2是一个d=2的B-Tree示意图。

图2

由于B-Tree的特性,在B-Tree中按key检索数据的算法非常直观:首先从根节点进行二分查找,如果找到则返回对应节点的data,否则对相应区间的指针指向的节点递归进行查找,直到找到节点或找到null指针,前者查找成功,后者查找失败。B-Tree上查找算法的伪代码如下:

BTree_Search(node, key) {
    if(node == null) return null;
    foreach(node.key)
    {
        if(node.key[i] == key) return node.data[i];
            if(node.key[i] > key) return BTree_Search(point[i]->node);
    }
    return BTree_Search(point[i+1]->node);
}
data = BTree_Search(root, my_key);

关于B-Tree有一系列有趣的性质,例如一个度为d的B-Tree,设其索引N个key,则其树高h的上限为logd((N+1)/2),检索一个key,其查找节点个数的渐进复杂度为O(logdN)。从这点可以看出,B-Tree是一个非常有效率的索引数据结构。

另外,由于插入删除新的数据记录会破坏B-Tree的性质,因此在插入删除时,需要对树进行一个分裂、合并、转移等操作以保持B-Tree性质,本文不打算完整讨论B-Tree这些内容,因为已经有许多资料详细说明了B-Tree的数学性质及插入删除算法,有兴趣的朋友可以在本文末的参考文献一栏找到相应的资料进行阅读。

B+Tree

B-Tree有许多变种,其中最常见的是B+Tree,例如MySQL就普遍使用B+Tree实现其索引结构。

与B-Tree相比,B+Tree有以下不同点:

每个节点的指针上限为2d而不是2d+1。

内节点不存储data,只存储key;叶子节点不存储指针。

图3是一个简单的B+Tree示意。

图3

由于并不是所有节点都具有相同的域,因此B+Tree中叶节点和内节点一般大小不同。这点与B-Tree不同,虽然B-Tree中不同节点存放的key和指针可能数量不一致,但是每个节点的域和上限是一致的,所以在实现中B-Tree往往对每个节点申请同等大小的空间。

一般来说,B+Tree比B-Tree更适合实现外存储索引结构,具体原因与外存储器原理及计算机存取原理有关,将在下面讨论。

带有顺序访问指针的B+Tree

一般在数据库系统或文件系统中使用的B+Tree结构都在经典B+Tree的基础上进行了优化,增加了顺序访问指针。

图4

如图4所示,在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如图4中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。

文章评论

我的丈夫是个程序员
我的丈夫是个程序员
如何成为一名黑客
如何成为一名黑客
代码女神横空出世
代码女神横空出世
编程语言是女人
编程语言是女人
60个开发者不容错过的免费资源库
60个开发者不容错过的免费资源库
为啥Android手机总会越用越慢?
为啥Android手机总会越用越慢?
10个帮程序员减压放松的网站
10个帮程序员减压放松的网站
要嫁就嫁程序猿—钱多话少死的早
要嫁就嫁程序猿—钱多话少死的早
2013年中国软件开发者薪资调查报告
2013年中国软件开发者薪资调查报告
我跳槽是因为他们的显示器更大
我跳槽是因为他们的显示器更大
10个调试和排错的小建议
10个调试和排错的小建议
 程序员的样子
程序员的样子
聊聊HTTPS和SSL/TLS协议
聊聊HTTPS和SSL/TLS协议
鲜为人知的编程真相
鲜为人知的编程真相
Java 与 .NET 的平台发展之争
Java 与 .NET 的平台发展之争
“肮脏的”IT工作排行榜
“肮脏的”IT工作排行榜
程序员眼里IE浏览器是什么样的
程序员眼里IE浏览器是什么样的
程序员都该阅读的书
程序员都该阅读的书
Web开发者需具备的8个好习惯
Web开发者需具备的8个好习惯
“懒”出效率是程序员的美德
“懒”出效率是程序员的美德
漫画:程序员的工作
漫画:程序员的工作
十大编程算法助程序员走上高手之路
十大编程算法助程序员走上高手之路
程序员和编码员之间的区别
程序员和编码员之间的区别
程序员的鄙视链
程序员的鄙视链
2013年美国开发者薪资调查报告
2013年美国开发者薪资调查报告
程序员周末都喜欢做什么?
程序员周末都喜欢做什么?
看13位CEO、创始人和高管如何提高工作效率
看13位CEO、创始人和高管如何提高工作效率
不懂技术不要对懂技术的人说这很容易实现
不懂技术不要对懂技术的人说这很容易实现
如何区分一个程序员是“老手“还是“新手“?
如何区分一个程序员是“老手“还是“新手“?
为什么程序员都是夜猫子
为什么程序员都是夜猫子
当下全球最炙手可热的八位少年创业者
当下全球最炙手可热的八位少年创业者
Web开发人员为什么越来越懒了?
Web开发人员为什么越来越懒了?
Google伦敦新总部 犹如星级庄园
Google伦敦新总部 犹如星级庄园
老美怎么看待阿里赴美上市
老美怎么看待阿里赴美上市
什么才是优秀的用户界面设计
什么才是优秀的用户界面设计
程序员应该关注的一些事儿
程序员应该关注的一些事儿
总结2014中国互联网十大段子
总结2014中国互联网十大段子
一个程序员的时间管理
一个程序员的时间管理
那些性感的让人尖叫的程序员
那些性感的让人尖叫的程序员
程序猿的崛起——Growth Hacker
程序猿的崛起——Growth Hacker
科技史上最臭名昭著的13大罪犯
科技史上最臭名昭著的13大罪犯
老程序员的下场
老程序员的下场
做程序猿的老婆应该注意的一些事情
做程序猿的老婆应该注意的一些事情
Java程序员必看电影
Java程序员必看电影
每天工作4小时的程序员
每天工作4小时的程序员
程序员必看的十大电影
程序员必看的十大电影
5款最佳正则表达式编辑调试器
5款最佳正则表达式编辑调试器
团队中“技术大拿”并非越多越好
团队中“技术大拿”并非越多越好
旅行,写作,编程
旅行,写作,编程
软件开发程序错误异常ExceptionCopyright © 2009-2015 MyException 版权所有