# poj_2823(单一队列)

www.MyException.Cn  网友分享于：2014-08-06  浏览：0次
poj_2823(单调队列)
Sliding Window
 Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 38520 Accepted: 11415 Case Time Limit: 5000MS

Description

An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
Window position Minimum value Maximum value
[1  3  -1] -3  5  3  6  7  -1 3
1 [3  -1  -3] 5  3  6  7  -3 3
1  3 [-1  -3  5] 3  6  7  -3 5
1  3  -1 [-3  5  3] 6  7  -3 5
1  3  -1  -3 [5  3  6] 7  3 6
1  3  -1  -3  5 [3  6  7] 3 7

Your task is to determine the maximum and minimum values in the sliding window at each position.

Input

The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line.

Output

There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values.

Sample Input

```8 3
1 3 -1 -3 5 3 6 7
```

Sample Output

```-1 -3 -3 -3 3 3
3 3 5 5 6 7
```

1.该队列时刻保持队头元素最小且递增。元素从队尾插入，如果小于队尾元素，那么就删去队尾元素，再插入。

2.同时需要一个数组保存元素下标，以本题为例，区间长度为k,队头元素的下标小于当前元素下标i-k+1时，也就是此时队头元素已经不在k区间内了，就把队头元素删去。

```#include<iostream>
#include<cstdio>
#define M 1000001
using namespace std;

int n,k;
int a[M];
int q[M];
int p[M];

void get_min()
{
int tail=0;
for(int i=0;i<k-1;i++)
{
--tail;
q[++tail]=a[i];
p[tail]=i;
}
for(int i=k-1;i<n;i++)
{
--tail;
q[++tail]=a[i];
p[tail]=i;
{
}
}
cout<<endl;
}

void get_max()
{
int tail=0;
for(int i=0;i<k-1;i++)
{
--tail;
q[++tail]=a[i];
p[tail]=i;
}
for(int i=k-1;i<n;i++)
{
--tail;
q[++tail]=a[i];
p[tail]=i;
{
}
}
cout<<endl;
}

int main()
{
//freopen("d:\\test.txt","r",stdin);
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
get_min();
get_max();
return 0;
}
```