MyException - 我的异常网
当前位置:我的异常网» 软件架构设计 » Zookeeper的初始介入 应用场景

Zookeeper的初始介入 应用场景

www.MyException.Cn  网友分享于:2015-08-26  浏览:16次
Zookeeper的初步介入 应用场景

从设计模式的方向看:Zookeeper是基于观察者模式设计的分布式服务管理框架。

下面是基于前辈们的一些理解与总结:

 

ZooKeeper介绍

ZooKeeperHadoop的正式子项目,它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

ZookeeperGoogleChubby一个开源的实现.是高有效和可靠的协同工作系统.Zookeeper能够用来leader选举,配置信息维护等.在一个分布式的环境中,我们需要一个Master实例或存储一些配置信息,确保文件写入的一致性等.

 

Zookeeper,znode是一个跟Unix文件系统路径相似的节点,可以往这个节点存储或获取数据.如果在创建znodeFlag设置 EPHEMERAL,那么当这个创建这个znode的节点和Zookeeper失去连接后,这个znode将不再存在在Zookeeper .Zookeeper使用Watcher察觉事件信息,当客户端接收到事件信息,比如连接超时,节点数据改变,子节点改变,可以调用相应的行为来处理数 .ZookeeperWiki页面展示了如何使用Zookeeper来处理事件通知,队列,优先队列,,共享锁,可撤销的共享锁,两阶段提交.

那么Zookeeper能帮我们作什么事情呢?简单的例子:假设我们我们有个20个搜索引擎的服务器(每个负责总索引中的一部分的搜索任务)和一个 总服务器(负责向这20个搜索引擎的服务器发出搜索请求并合并结果集),一个备用的总服务器(负责当总服务器宕机时替换总服务器),一个web cgi(向总服务器发出搜索请求).搜索引擎的服务器中的15个服务器现在提供搜索服务,5个服务器正在生成索引.20个搜索引擎的服务器经常要让正在 提供搜索服务的服务器停止提供服务开始生成索引,或生成索引的服务器已经把索引生成完成可以搜索提供服务了.使用Zookeeper可以保证总服务器自动 感知有多少提供搜索引擎的服务器并向这些服务器发出搜索请求,备用的总服务器宕机时自动启用备用的总服务器,webcgi能够自动地获知总服务器的网络 地址变化.这些又如何做到呢?

1.     提供搜索引擎的服务器都在Zookeeper中创建znode,zk.create("/search/nodes/node1",
"hostname".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateFlags.EPHEMERAL);

2.   总服务器可以从Zookeeper中获取一个znode的子节点的列表,zk.getChildren("/search/nodes", true);

3.    总服务器遍历这些子节点,并获取子节点的数据生成提供搜索引擎的服务器列表.

4.  当总服务器接收到子节点改变的事件信息,重新返回第二步.

5.   总服务器在Zookeeper中创建节点,zk.create("/search/master", "hostname".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateFlags.EPHEMERAL);

6.  备用的总服务器监控Zookeeper中的"/search/master"节点.当这个znode的节点数据改变时,把自己启动变成总服务器,并把自己的网络地址数据放进这个节点.

7.   webcgiZookeeper"/search/master"节点获取总服务器的网络地址数据并向其发送搜索请求.

8.    webcgi监控Zookeeper中的"/search/master"节点,当这个znode的节点数据改变时,从这个节点获取总服务器的网络地址数据,并改变当前的总服务器的网络地址.


 

ZooKeeper典型使用场景一览

ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得zookeeper能够应用于很多场景。网上对zk的使用场景也有不少介绍,本文将结合作者身边的项目例子,系统的对zk的使用场景进行归类介绍。 值得注意的是,zk并不是生来就为这些场景设计,都是后来众多开发者根据框架的特性,摸索出来的典型使用方法。因此,也非常欢迎你分享你在ZK使用上的奇技淫巧。

场景类别

典型场景描述(ZK特性,使用方法)

应用中的具体使用

数据发布与订阅

发布与订阅即所谓的配置管理,顾名思义就是将数据发布到zk节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,地址列表等就非常适合使用。

1. 索引信息和集群中机器节点状态存放在zk的一些指定节点,供各个客户端订阅使用。2. 系统日志(经过处理后的)存储,这些日志通常2-3天后被清除。

3. 应用中用到的一些配置信息集中管理,在应用启动的时候主动来获取一次,并且在节点上注册一个Watcher,以后每次配置有更新,实时通知到应用,获取最新配置信息。

4. 业务逻辑中需要用到的一些全局变量,比如一些消息中间件的消息队列通常有个offset,这个offset存放在zk上,这样集群中每个发送者都能知道当前的发送进度。

5. 系统中有些信息需要动态获取,并且还会存在人工手动去修改这个信息。以前通常是暴露出接口,例如JMX接口,有了zk后,只要将这些信息存放到zk节点上即可。

Name Service

这个主要是作为分布式命名服务,通过调用zkcreate node api,能够很容易创建一个全局唯一的path,这个path就可以作为一个名称。

 

分布通知/协调

ZooKeeper中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统updateznode,那么另一个系统能够收到通知,并作出相应处理。

1. 另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过zk上某个节点关联,大大减少系统耦合。2. 另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改了ZK上某些节点的状态,而zk就把这些变化通知给他们注册Watcher的客户端,即推送系统,于是,作出相应的推送任务。

3. 另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到zk来注册一个临时节点,并且定时将自己的进度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。

总之,使用zookeeper来进行分布式通知和协调能够大大降低系统之间的耦合。

分布式锁

分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性,即用户只要完全相信每时每刻,zk集群中任意节点(一个zk server)上的相同znode的数据是一定是相同的。锁服务可以分为两类,一个是保持独占,另一个是控制时序。

所谓保持独占,就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把zk上的一个znode看作是一把锁,通过create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。

控制时序,就是所有视图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里 /distribute_lock 已经预先存在,客户端在它下面创建临时有序节点(这个可以通过节点的属性控制:CreateMode.EPHEMERAL_SEQUENTIAL来指定)。Zk的父节点(/distribute_lock)维持一份sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。

 

集群管理

1. 集群机器监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报我还活着 这种做法可行,但是存在两个比较明显的问题:1. 集群中机器有变动的时候,牵连修改的东西比较多。2. 有一定的延时。

利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:a. 客户端在节点 x 上注册一个Watcher,那么如果的子节点变化了,会通知该客户端。b. 创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。

例如,监控系统在 /clusterServers 节点上注册一个Watcher,以后每动态加机器,那么就往 /clusterServers 下创建一个 EPHEMERAL类型的节点:/clusterServers/{hostname}. 这样,监控系统就能够实时知道机器的增减情况,至于后续处理就是监控系统的业务了。
2.
 Master选举则是zookeeper中最为经典的使用场景了。

在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。

利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。

利用这个特性,就能很轻易的在分布式环境中进行集群选取了。

另外,这种场景演化一下,就是动态Master选举。这就要用到 EPHEMERAL_SEQUENTIAL类型节点的特性了。

上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在ZK上创建结果的一种可能情况是这样: /currentMaster/{sessionId}-1 , /currentMaster/{sessionId}-2 , /currentMaster/{sessionId}-3 ….. 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上小时,那么之后最小的那个机器就是Master了。

1. 在搜索系统中,如果集群中每个机器都生成一份全量索引,不仅耗时,而且不能保证彼此之间索引数据一致。因此让集群中的Master来进行全量索引的生成,然后同步到集群中其它机器。2. 另外,Master选举的容灾措施是,可以随时进行手动指定master,就是说应用在zk在无法获取master信息时,可以通过比如http方式,向一个地方获取master

分布式队列

队列方面,我目前感觉有两种,一种是常规的先进先出队列,另一种是要等到队列成员聚齐之后的才统一按序执行。对于第二种先进先出队列,和分布式锁服务中的控制时序场景基本原理一致,这里不再赘述。

第二种队列其实是在FIFO队列的基础上作了一个增强。通常可以在 /queue 这个znode下预先建立一个/queue/num 节点,并且赋值为n(或者直接给/queue赋值n),表示队列大小,之后每次有队列成员加入后,就判断下是否已经到达队列大小,决定是否可以开始执行了。这种用法的典型场景是,分布式环境中,一个大任务Task A,需要在很多子任务完成(或条件就绪)情况下才能进行。这个时候,凡是其中一个子任务完成(就绪),那么就去 /taskList 下建立自己的临时时序节点(CreateMode.EPHEMERAL_SEQUENTIAL),当 /taskList 发现自己下面的子节点满足指定个数,就可以进行下一步按序进行处理了。

 

 

原文地址:

http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/

http://rdc.taobao.com/team/jm/archives/1232

 

文章评论

5款最佳正则表达式编辑调试器
5款最佳正则表达式编辑调试器
代码女神横空出世
代码女神横空出世
初级 vs 高级开发者 哪个性价比更高?
初级 vs 高级开发者 哪个性价比更高?
程序员眼里IE浏览器是什么样的
程序员眼里IE浏览器是什么样的
如何区分一个程序员是“老手“还是“新手“?
如何区分一个程序员是“老手“还是“新手“?
10个调试和排错的小建议
10个调试和排错的小建议
程序员应该关注的一些事儿
程序员应该关注的一些事儿
10个帮程序员减压放松的网站
10个帮程序员减压放松的网站
一个程序员的时间管理
一个程序员的时间管理
60个开发者不容错过的免费资源库
60个开发者不容错过的免费资源库
编程语言是女人
编程语言是女人
“肮脏的”IT工作排行榜
“肮脏的”IT工作排行榜
老程序员的下场
老程序员的下场
漫画:程序员的工作
漫画:程序员的工作
 程序员的样子
程序员的样子
总结2014中国互联网十大段子
总结2014中国互联网十大段子
Java 与 .NET 的平台发展之争
Java 与 .NET 的平台发展之争
聊聊HTTPS和SSL/TLS协议
聊聊HTTPS和SSL/TLS协议
科技史上最臭名昭著的13大罪犯
科技史上最臭名昭著的13大罪犯
2013年中国软件开发者薪资调查报告
2013年中国软件开发者薪资调查报告
看13位CEO、创始人和高管如何提高工作效率
看13位CEO、创始人和高管如何提高工作效率
我的丈夫是个程序员
我的丈夫是个程序员
当下全球最炙手可热的八位少年创业者
当下全球最炙手可热的八位少年创业者
程序员的一天:一寸光阴一寸金
程序员的一天:一寸光阴一寸金
那些争议最大的编程观点
那些争议最大的编程观点
每天工作4小时的程序员
每天工作4小时的程序员
程序员周末都喜欢做什么?
程序员周末都喜欢做什么?
为啥Android手机总会越用越慢?
为啥Android手机总会越用越慢?
写给自己也写给你 自己到底该何去何从
写给自己也写给你 自己到底该何去何从
程序员的鄙视链
程序员的鄙视链
程序员和编码员之间的区别
程序员和编码员之间的区别
2013年美国开发者薪资调查报告
2013年美国开发者薪资调查报告
Java程序员必看电影
Java程序员必看电影
什么才是优秀的用户界面设计
什么才是优秀的用户界面设计
Web开发人员为什么越来越懒了?
Web开发人员为什么越来越懒了?
老美怎么看待阿里赴美上市
老美怎么看待阿里赴美上市
我跳槽是因为他们的显示器更大
我跳槽是因为他们的显示器更大
“懒”出效率是程序员的美德
“懒”出效率是程序员的美德
不懂技术不要对懂技术的人说这很容易实现
不懂技术不要对懂技术的人说这很容易实现
团队中“技术大拿”并非越多越好
团队中“技术大拿”并非越多越好
鲜为人知的编程真相
鲜为人知的编程真相
为什么程序员都是夜猫子
为什么程序员都是夜猫子
亲爱的项目经理,我恨你
亲爱的项目经理,我恨你
程序员最害怕的5件事 你中招了吗?
程序员最害怕的5件事 你中招了吗?
那些性感的让人尖叫的程序员
那些性感的让人尖叫的程序员
十大编程算法助程序员走上高手之路
十大编程算法助程序员走上高手之路
做程序猿的老婆应该注意的一些事情
做程序猿的老婆应该注意的一些事情
程序猿的崛起——Growth Hacker
程序猿的崛起——Growth Hacker
程序员都该阅读的书
程序员都该阅读的书
软件开发程序错误异常ExceptionCopyright © 2009-2015 MyException 版权所有